shapeDTW: Shape Dynamic Time Warping

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

shapeDTW: Shape Dynamic Time Warping

Dynamic Time Warping (DTW) is an algorithm to align temporal sequences with possible local non-linear distortions, and has been widely applied to audio, video and graphics data alignments. DTW is essentially a point-to-point matching method under some boundary and temporal consistency constraints. Although DTW obtains a global optimal solution, it does not necessarily achieve locally sensible m...

متن کامل

Contour-Based Shape Retrieval Using Dynamic Time Warping

A dissimilarity measure for shapes described by their contour, the Cyclic Dynamic Time Warping (CDTW) dissimilarity, is introduced. The dissimilarity measure is based on Dynamic Time Warping of cyclic strings, i.e., strings with no definite starting/ending points. The Cyclic Edit Distance algorithm by Maes cannot be directly extended to compute the CDTW dissimilarity, as we show in the paper. W...

متن کامل

Derivative Dynamic Time Warping

Time series are a ubiquitous form of data occurring in virtually every scientific discipline. A common task with time series data is comparing one sequence with another. In some domains a very simple distance measure, such as Euclidean distance will suffice. However, it is often the case that two sequences have the approximately the same overall component shapes, but these shapes do not line up...

متن کامل

Correlation Based Dynamic Time Warping

Dynamic Time Warping (DTW) is a widely used technique for univariate time series comparison. This paper proposes a new algorithm for the comparison of multivariate time series which generalize DTW for the needs of correlated multivariate time series.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pattern Recognition

سال: 2018

ISSN: 0031-3203

DOI: 10.1016/j.patcog.2017.09.020